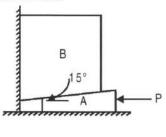

Hall Ticket Number:							

CE114 (R20)

B.TECH. DEGREE E.	XAMINATION, DECEMBER-20	024
	First Year] (Supplementary)	
	ERING MECHANICS	
Time: Three hours	Maximum Ma	rks: 70
Answer Oue	estion No.1 compulsorily. $(14 \times 1 = 1)$	
Answer One	Question from each unit. $(4 \times 14 = 5)$	6)
1. Answer the following:		
(a) State the principle	e of transmissibility.	CO1
(b) Distinguish between	een centroid and centre of gravity.	CO1
(c) What is the cen	troid of a triangle with respect	
to base?		CO ₁
(d) List the assumpt	tions made in the analysis of a	
simple truss.		CO2
(e) State different typ	es of friction.	CO ₂
(f) What is the coeffi	cient of friction when heavy truck	
is at rest?		CO ₂
(g) Define couple.		CO1
(h) Define unit vector		CO3
(i) State principle of		CO ₃
(j) What is a redunda		CO2
	f inertia of an area.	CO4
(l) State parallel axis		CO4
(m) Define rigid body(n) What is the relati		CO ₁
and joints in perfe	on between number of members	CO2
and joints in perio	ct truss:	CO2
	UNIT – I	
(a) State and prove Var (b) With respect to the locate the centroid of	rignon's theorem. (6M) e coordinate axes x and y of the shaded area shown in	CO1
figure.	(8M)	CO1

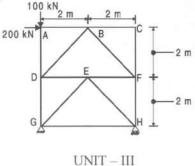
(a) Explain with examples any five system of forces.

ces. (6M) CO1

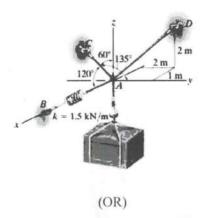

(b) Resultant of two forces, one of which is double the other is 260 N. If the direction of the larger force is reversed and the other remains unaltered, the resultant reduces to 180 N. Determine the magnitude of the forces and the angle between the forces.

(8M) CO1

UNIT-II

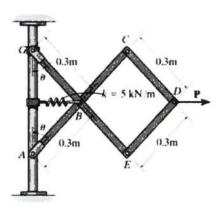

4. Find the horizontal force P required to push the block A of weight 150 N which carries block B of weight 1280 N as shown in figure. Take angle of limiting friction between floor and block A as 14° and that between vertical wall and block B as 13° and coefficient of limiting friction between the blocks as 0.3

CO₂

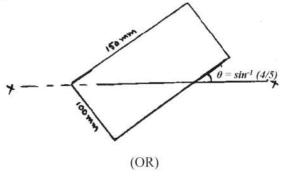


(OR)

5. Find the forces in all the members of truss shown in figure. CO2

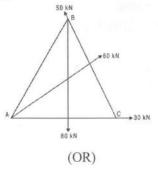

6. Determine the tensions in each cord used to support the 100 kg crate shown in figure.

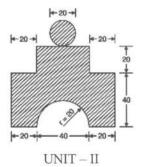
7. Determine the required force P, needed to maintain the equilibrium of scissors linkage (shown in figure) when $\theta = 60^{\circ}$ by the principle virtual work. The spring is unstretched when $\theta = 30^{\circ}$. Neglect the mass of the links.


CO3

UNIT - IV

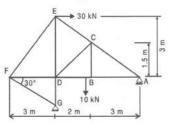
 Determine the moment of inertia of the rectangle shown in figure about x-x axis.


 Derive the mass moment of inertia of a sphere of uniform density and radius 'R' about its diametrical axis.


CE114 (R20)

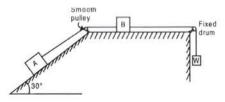
Hall	Tick	et Number:	
		CE114	D30\
		CE114 (K 20)
	E	B.TECH. DEGREE EXAMINATION, APRIL-2024	
		Semester I [First Year] (Supplementary)	
		ENGINEERING MECHANICS	
Time	e: Tl	hree hours Maximum Mark	s: 70
		Answer Question No.1 compulsorily. $(14 \times 1 = 14)$ Answer One Question from each unit. $(4 \times 14 = 56)$	
1. /	\nsv	wer the following:	
((a)	State Lami's theorem with neat sketch.	CO ₁
((b)		
		having diameter 66 mm from its base.	CO1
	(c)		CO1
((d)	Determine moment about point T in the figure below for the forces given	CO1
		13 150N.	
		(-3,3), (4,3) T	
		×	
		\$ *	
		R(-3,3), (4,3) T	
	(e)	State the assumptions made in the analysis of plane	
	(0)	truss.	CO ₂
	(f)		CO ₂
	(g)	- 발생님의 경우 전에 가장 바로 바로 보다	
		expression: $\{(i.i) + (-i.j) + (-k.k) + (k.i)\}.(Ai +Bj + Cz)$	CO ₃
((h)	State principle of virtual work.	CO ₃
9	(i)	What are the static equilibrium elements of concurrent	R12012501
		force system in space?	CO ₃
	(j)	State perpendicular axis theorem with a neat sketch	
		and specify the necessary equation.	CO4
	(k)	Write the unit of Area moment of inertia.	CO4
	(1)	Define mass moment of inertia.	CO4
16	7	Define cone of friction.	CO2
	(n)	What is a rigid body?	CO ₁

 An equilateral triangular plate of side 200 mm is acted by system of forces shown in figure. Compute the resultant force and specify the location of resultant force with respect to point A.



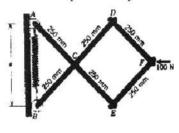
Determine coordinates of centroid of the figure with respect to a specified coordinate axes.

4. Determine the member forces for the truss shown in figure.


Truss is hinged at G and supported on Roller at A. CO2

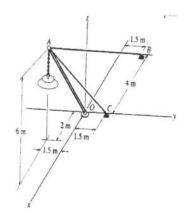
CO₁

 Compute the minimum and maximum value of W required to move block A and block B respectively. Consider Weight of block A = 3000 N, Weight of block B = 3000 N. Coefficient of friction at all surfaces of contact is 0.2. Assume pulley as smooth.

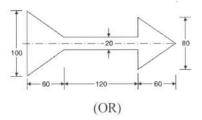

CO₂

UNIT - III

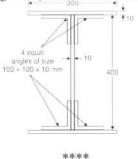
6. The parallelogram frame is loaded by a horizontal 100 N force. The unstretched length of the spring is 350 mm. Determine the required stiffness k of the spring if s = 400 mm in the static equilibrium position in figure.


CO₃

(OR)


7. The lamp is supported by pole AO and cables AB and AC in the position shown in figure. The cables AB and AC can sustain a maximum tension of 500 kN and the pole can support a maximum compression of 300 kN. Determine maximum weight of the lamp that can be supported in the position shown. Assume the force in the pole acts along the axis of the pole

CO₃

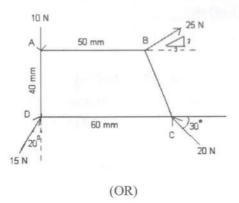


UNIT - IV

 Determine Moment of inertia of the figure, about its centroidal X-X and Y-Y axes (all measurements shown are in consistent units)

 Compute Moment of inertia about centroidal axes for the composite figure given. (All are in consistent units).

CE114 (R20)


Hall Ticket Number:						

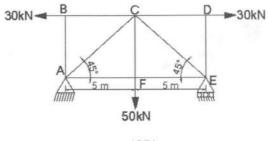
CE114 (R20)

B.TECH. DEGREE EXAMINATION, JANUARY-2024

	Semester I [First Year] (Regular & Supplementary)	
	ENGINEERING MECHANICS	
Time: T	hree hours Maximum Marl	ks: 70
	Answer Question No.1 compulsorily. (14 x 1 = 14 Answer One Question from each unit. (4 x 14 = 56	
1. Ans	wer the following:	
(a)	Define a force.	COI
(b)	State law of transmissibility of forces.	COL
(c)	Define free body diagram.	CO ₁
(d)	What is a deficient truss?	CO ₂
(e)	What is the coefficient of friction when a heavy truck	
	is at rest?	CO ₂
(f)	Give the example of types of loads and beams in your	
	class room.	CO ₂
(g)	Define angle of repose.	CO2
(h)	Differentiate moment and couple.	COL
(i)	Can you divide a vector by another vector?	CO3
(j)	What is meant by position vector?	CO3
(k)	What is the moment of inertia of a semicircle plate	
	with respect to its base?	CO4
(1)	Differentiate between virtual work and real work.	CO3
(m)	What is the limitation of parallel axis theorem?	CO4
(n)	State the relation between moment of inertia and radius of gyration.	CO4
	UNIT – I	

2. Replace the given system of forces acting on a body as shown in the figure by a single force and couple acting at the point A. CO1

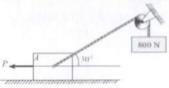
3. (a) State and prove Varignon's theorem.


(7M) CO1

(b) State and prove parallelogram law of forces.

(7M) CO1

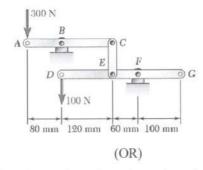
UNIT - II


4. Determine the forces in the members of the truss by method of sections.

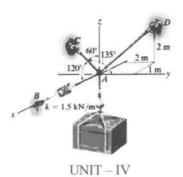
(OR)

5. (a) The block A shown in figure, weighs 2000 N. The cord attached to A passes over a frictionless pulley and supports a weight equal to 800 N. The value of coefficient friction between A and the horizontal plane is 0.35. Determine the horizontal force P (i) If the motion is impending towards the left (ii) if the motion is impending towards the right.

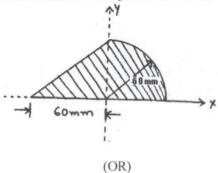
(8M) CO2


(b) What are the advantages and disadvantages of friction in the real life? (6M) CO2

UNIT-III


Determine the couple M which must be applied to member DEFG to maintain the equilibrium of the linkage by virtual work method.

CO3


CO₃

7. Determine the tensions in each cord used to support the 100 kg crate shown in figure.

 Find the moment of inertia of the shaded area, as shown in figure about its centroidal axes parallel to x-axis.

 Determine the mass moment of inertia of rectangular plate of width 'b', height 'h' and thickness 't' about its CO4 centroidal axes.

CE114 (R20)

Hall Ticket Number:

CE114 (R20)

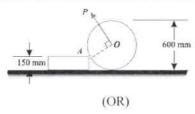
B.TECH. DEGREE EXAMINATION, JUNE-2023

Semester I [First Year] (Supplementary)

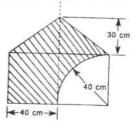
ENGINEERING MECHANICS

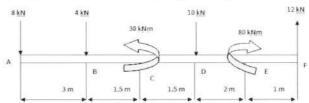
Time: Three hours Maximum Marks: 70

Answer Question No.1 compulsorily. $(14 \times 1 = 14)$ Answer One Question from each unit. $(4 \times 14 = 56)$

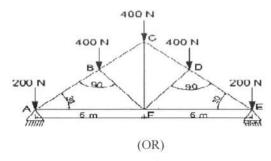

 Answer the following: Give the equations of static equilibrium conditions. CO₁ CO₁ What are the characteristics of a force? (b) (c) Differentiate between moment and couple. CO1 CO₂ List the types of parallel forces. (d) List the types friction. CO₂ (e) Distinguish between centroid and center of gravity. CO2 (f) State parallel axis theorem. CO₂ (g) Give the moment of inertia for a sphere of radius 'R' about (h) CO₃ its geometrical axis. CO₃ What is mass moment of inertia? (i) CO₃ Differentiate between truss and a frame. (i) In which situations method of sections is preferred rather (k) CO₄ than method of joints? CO₄ What is angle of friction? (1) What is unit vector? CO₄ List the assumptions made in the analysis of pin-jointed (n) CO3 frame.

UNIT - I

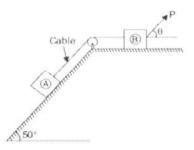

(a) Three cylinders weighing 100 N each and of 80 mm diameter are placed in a channel of 180 mm width as shown in figure. Determine the pressure exerted by (i) the cylinder A on B at the point of contact (ii) the cylinder B on the base and (iii) the cylinder B on the wall.


- (b) A uniform wheel of 600 mm diameter, weighing 5 kN rests against a rigid rectangular block of 150 mm height as shown in figure. Find the least pull, through the centre of the wheel, required just to turn the wheel over the corner A of the block. Also find the reaction on the block. Take all the surfaces to be smooth.
- (7M) CO1

3. (a) Find the centroid of the shaded area shown in figure. (7M) CO1



- (b) Figure shows a parallel force system of four forces and two couples:
- (7M) CO1
- (i) Replace it by single force and obtain its location from point A
- (ii) Replace it by force couple system at point A
- (iii) Replace it by a force couple system at point D.


 Calculate the forces induced in the members of the pin-jointed truss shown in figure.

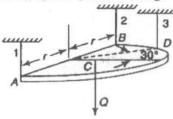
CO₂

5. A system consists of two blocks connected by a cable is as shown in figure. The masses of the block A and B are 7.5 kg and 25 kg respectively. Determine the magnitude of minimum force and its inclination with reference to horizontal, to be applied on block B. The block having impending motion towards the right. Take coefficient of friction at all contact surfaces to be 0.28.

CO₂

UNIT - III

(a) A force F = 2i + 4j − 3k is applied at a point P (1, 1, −2). Find the moment of the force F about the point (2, −1, 2).


(7M) CO3

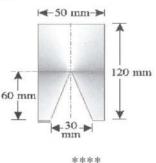
(b) The lines of action of three forces concurrent at origin O pass respectively through points A,B,C having coordinates (-1, 2, 4), (3, 0, -3) and (2, -2, 4). The magnitude of the forces are F_a = 200 N, F_b = 45 N and F_c = 150 N. Find magnitude and direction of their resultant

(7M) CO3

 (a) A homogeneous semicircular plate of weight 'Q' and radius 'r' is supported in a horizontal plane by three vertical strings as shown in figure. Determine the tensile forces S₁, S₂ and S₃ in these strings.

(b) Determine the resultant of a system of concurrent forces having the following magnitude and passing through the origin and indicated points p = 14000 N (12, 6 -4), T = 2600 N (-3, -4, 12), F = 1350 N (6, -3, -6).

UNIT-IV


8. Determine the mass moment of inertia of a sphere of radius R about centroidal axes.

CO4

(OR)

Find the moment of inertia of the shaded area as shown in figure about centroidal axes.

CO₄

CE114 (R20)

Hall Ticket Number:							

1

fill-2

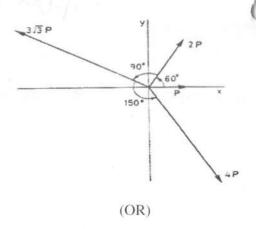
CE114 (R20)

B.TECH. DEGREE EXAMINATION, MARCH-2023

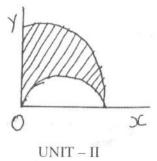
Semester I [First Year] (Regular & Supplementary)

ENGINEERING MECHANICS

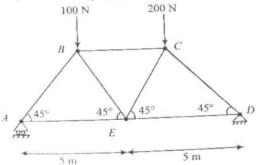
Time: Three hours Maximum Marks: 70


Answer Question No.1 compulsorily. $(14 \times 1 = 14)$

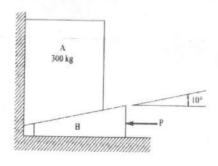
Answer One Question from each unit. $(4 \times 14 = 56)$


Ans	wer the following:	
(a)	State Lami's theorem.	CO1
(b)	Define couple.	CO1
(c)	Mention the types of friction.	CO ₂
(d)	What is the centroid of a semi-circle?	CO ₁
(e)	Define polar moment of inertia.	CO4
(f)	Define radius of gyration.	CO4
(g)	Define angle of friction.	CO2
(h)	Mention the types of supports.	CO1
(i)	Mention the types of system of forces.	CO1
(j)	Define moment of a force about a point in force	
	system in space.	CO3
(k)	State principle of virtual work.	CO3
(1)	Define mass moment of inertia.	CO4
(m)	What is the mass moment inertia of circular plate of	
	radius R and thickness t about its centroidal axis.	CO4
(n)	Define cone of friction.	CO ₂

UNIT-I

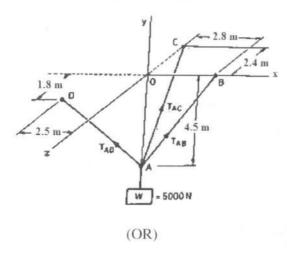

2. Find the magnitude and direction of the resultant R of four concurrent forces acting as shown in figure.

 Locate the centroid of the shaded area obtained by removing a semicircle of diameter 'R' from a quadrant of a circle of radius 'R' shown in figure.



4. Find the forces in all the members of the truss shown in figure by using method of joints.

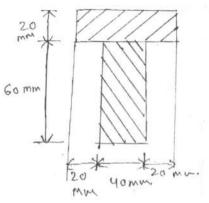
 If the coefficient of static friction equals 0.3 for all surfaces of contact, determine the smallest value of force P necessary to raise the block A. Neglect the weight of the wedge B.


CO₂

UNIT - III

 A load W of magnitude 5000 N is supported by three cables. Determine the tension in cables.

CO3



 Explain about principle of virtual work and application of the principle of virtual work.

UNIT - IV

Determine the moment of inertia of the area of T-section as shown in figure with respect to the centroidal axes.

CO4

(OR)

9. Find the mass moment of inertia of the solid cone of height 'h' and base radius 'R' about its axis of rotation.

CE114 (R20)

all Ti	cke. N	ambe	r:	

(k)

(1)

(n)

diameter 120 mm.

(m) State parallel axis theorem.

file-2

CE114(R20)

B.TECH. DEGREE EXAMINATION, MARCH-2022

Semester I [First Year] (Supplementary)

ENGINEERING MECHANICS Maximum Marks: 70 Time: Three hours Answer Question No.1 compulsorily. $(14 \times 1 = 14)$ Answer One Ouestion from each unit. $(4 \times 14 = 56)$ 1. Answer the following: Mention the principle of statics. CO₁ (b) Calculate the magnitude of resultant, when two forces of magnitude 56 N and 67 N act an angle of 38° degrees to each other. CO₁ Distinguish between centroid and centre of gravity. CO₁ (c) (d) Distinguish couple and torque. CO₂ CO₂ Enlist the types of friction. (e) Distinguish method of sections and method of joints. (f) CO₂ CO₂ (g) Define moment of a force. CO3 (h) Define unit vector. Give a clear representation the moment using vector (i) CO₃ notation (j) Define dot product of vector. CO₃

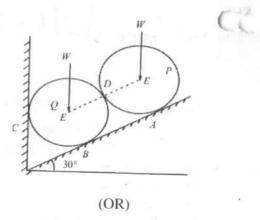
UNIT – I

Define polar moment of inertia and state its equation.

Calculate the radius of gyration of a circular plate of

2. Two cylindrical identical rollers A and B, each of weight W = 500 N are supported by an inclined plane and vertical wall and makes an angle of 30° with the horizontal as shown in figure. Assuming all surfaces to be smooth, determine the reactions at A, B and C.

What is the unit of mass moment of inertia?


COL

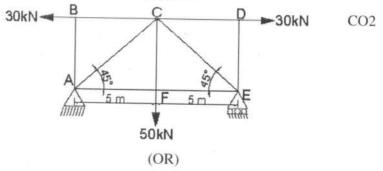
CO₄

CO₄

CO₄

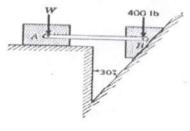
CO₄

3. (a) Define the following with examples:


(7M) CO1

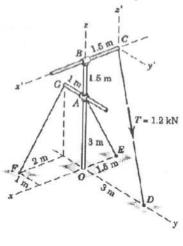
(7M) CO1

- (i) Coplanar and Non-coplanar forces
- (ii) Collinear and Non-collinear forces
- (b) Two forces of magnitude (P+Q) and (P-Q) acting at a point include an angle 2θ . Show that, if their resultant makes an angle α with the bisector of the angle between them, then P tan $\alpha = Q \tan \theta$.


UNIT - II

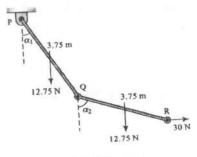
4. Using method of joints, determine the forces in all the members of a truss shown in figure.

Two blocks, connected by a horizontal link AB are supported on two rough planes as shown in figure. The coefficient for friction of block A on the horizontal plane is μ = 0.4. The angle of friction for block B on the inclined plane is μ =0.15. What is the smallest weight W of block A for which equilibrium of the system can exist?



UNIT - III

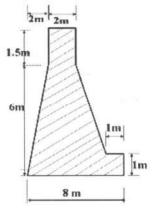
6. The rigid pole and cross-arm assembly of figure. Determine the vector expression for the moment of the 1.2 kN tension (i) About point O (ii) About the pole z-axis. Find each moment in two different ways.



(OR)

7. Two uniform bars from a link are shown in figure. Bars are of 3.75 m in length and 12.75 N weight. The system is pulled with a force of 30 N. Using method of virtual work, determine the angles α_1 and α_2 with the verticals.

CO₃



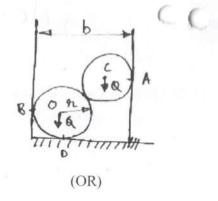
UNIT-IV

8. Determine the mass moment of inertia of right circular cone of mass M, base radius R and height H. CO4

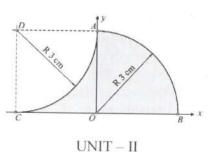
(OR)

 Determine moment of interia of shaded area as shown in given figure with respect to its base.

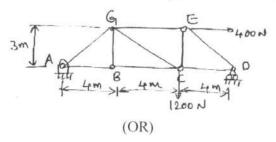
CE114(R20)


Hall Ticket Nobel.	Sile-2

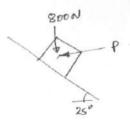
CE114(R20)


CE11	4(R20)
B.TECH. DEGREE EXAMINATION, OCTOBER-20	21
Semester I [First Year] (Supplementary)	
ENGINEERING MECHANICS	
Time: Three hours Maximum Ma	irks: 70
Answer Question No.1 compulsorily. $(14 \times 1 = 1 \text{ Answer One Question from each unit.})$	4)
 Answer the following: 	~ ×
(a) State Parallelogram Law of Forces.	COL
(b) State Law of Superposition of force	CO1
(c) Define Moment of a Force.	CO1
(d) What is radius of gyration?	CO4
(e) Define Mass Moment of Inertia.	CO4
(f) State parallel axis theorem.	CO4
(g) What is meant by Perfect Truss?	CO2
(h) Define Kinetic friction.	CO2
(i) Define virtual displacement.	CO3
(j) Define Moment of a force in vector notation for	
spatial force system.	CO3
position rector.	CO3
quartons of equilibrium for a concurrent	
force system in a plane. (m) Write the expression for mass moment of Legisland.	CO1
and the state of the state of the state of	
cone of base radius R and mass M about its axis of rotation.	
(n) Define (i) coefficient of friction (ii) angle of friction.	CO4
(i) estimated in thetion (ii) angle of friction.	CO ₂
UNIT – I	
2. Two smooth spheres, each of radius r and weight Q rest in a horizontal channel having vertical walls, the distance between which is b. Find the pressures exerted on the walls and floor at the points of contact A. B. and D. Till	

and floor at the points of contact A, B and D. The following numerical data are given: r = 250 mm, b = 900 mm and Q = 450 N.

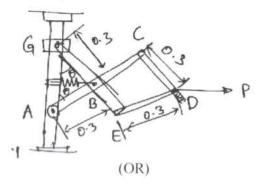

CO₁

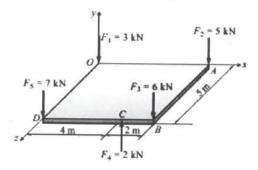
3. Find the centroid of the shaded area as shown in figure.


 For the truss loaded as shown in figure. Find the force in members GE, GC and BC by method of sections only.

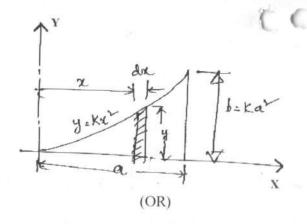
5. A support block is acted upon by two forces as shown in figure. Knowing that $\mu_s = 0.35$, $\mu_k = 0.25$. Determine force P required (i) to start block moving up the plane (ii) to keep it moving up (iii) prevent it from sliding down.

CO₂


CO1


UNIT - III

6. Determine the required force P, needed to maintain equilibrium of scissors linkage when $\theta=30^{\circ}$, mass of links are neglected. Use principle of virtual work.


 Five vertical forces are acting on a horizontal plate. Find resultant of the forces and point of application w.r.t. origin. CO3

UNIT - IV

8. Calculate the moment of inertia given area of the area shown figure w.r,t x and y axes.

CO₄

 Determine the mass moment of inertia of the cylinder of length L and radius R about its vertical axis. Assume the density of the material is constant.

CE114(R20)

Hall Ticket Namber:								

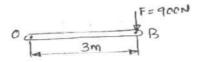
file-2

CE114(R20)

CO2

B.TECH. DEGREE EXAMINATION, JULY-2021

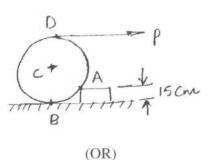
Semester I [First Year] (Regular)

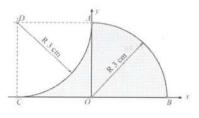

ENGINEERING MECHANICS

Time: Three hours

Answer Question No.1 compulsorily. (14 x 1 = 14)
Answer One Question from each unit. (4 x 14 = 56)

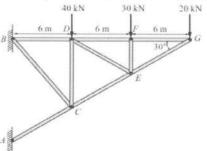
1. Answer the following:


(a) Define Law of Parallelogram of forces.
(b) Explain Composition of forces with a simple diagram.
(c) Define Moment of a force.
(d) Define unit vector.
(e) Resolve the force F = 900 N acting at B into a couple and a force at O.


(f) Mention Degrees of Freedom in various supports used in beams. CO₁ What is the centroid for semicircular area? CO₁ (g) What is meant by virtual work? (h) CO3 Write down the relation between No. of members (m), (i) No. of joints (j) and number of support reaction components (r) in a perfect truss. CO₂ What is a perfect truss? CO2 (i) (k) What is imperfect redundant truss? CO₂ Define polar moment of inertia of a plane area. (1) CO₄ (m) State parallel axis theorem for mass moment of Inertia. CO₄ (n) What is the relation between coefficient of friction

and angle of friction?

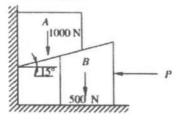
2. A uniform wheel of 60 cm diameter and weighing 1000 N rest against a rectangular block 15 cm high lying on a horizontal force P applied to the end of the string wound around the circumference of the wheel. Find force P as shown in figure when the wheel is just about to roll over the block.



3. Find the centroid of the shaded area as shown in figure. CO1

UNIT - II

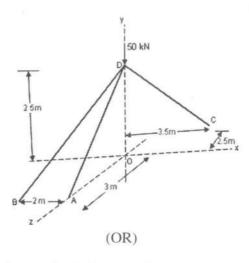
 For the truss loaded as shown in figure. Find the force in members DF, DE, CE and EF by method of joints only.

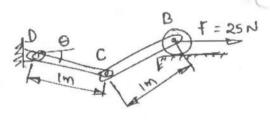


2

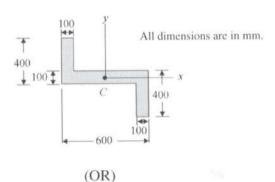
CO₁

5. A block A weighing 1000 N is to be raised by means of a 15° wedge B weighing 500 N. Assuming coefficient of friction between all contact surfaces to be 0.2, determine what minimum horizontal force P should be applied to raise the block shown in figure.




UNIT - III

 A Tripod carrying a load of 50 kN has its supports A, B and C which are coplanar in x-z lane as shown in figure. Assuming all points to be of ball and socket type, find the forces in the members AD, BD and CD.



7. Determine the angle θ for equilibrium of two-member linkage as shown in figure. Each member has a mass of 10 kg. Use principle of virtual work.

UNIT - IV

8. Determine the moment of inertia of the section shown in figure about the x and y centroidal axis.

 Determine the mass moment of inertia of the cylinder of length L about its vertical axis. The density of the material is constant.

CO₄

水水水水